TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 6, Pages 2371–2390 S 0002-9947(01)02517-X Article electronically published on February 13, 2001

ON THE COMPUTATION OF STABILIZED TENSOR FUNCTORS AND THE RELATIVE ALGEBRAIC K-THEORY OF DUAL NUMBERS

RANDY MCCARTHY

ABSTRACT. We compute the stabilization of functors from exact categories to abelian groups derived from n-fold tensor products. Rationally, this gives a new computation for the relative algebraic K-theory of dual numbers.

Introduction

In [8], T. Goodwillie computed the relative algebraic K-theory of dual numbers rationally and used this to show that a suitable trace map to cyclic homology is a rational equivalence on relative theories for nilpotent extensions. In [5], a new model for the relative algebraic K-theory of dual numbers was introduced and used to show the equivalence of stable K-theory and topological Hochschild homologywhich was shown in [16] to be equivalent to Mac Lane homology [10]. One of our goals in this paper is to give a new computation of Goodwillie's result by exploiting the model from [5]. To do this, one is lead to compute the stabilization of various functors from exact categories to abelian groups, as introduced in [14]. Essentially, given a functor F from exact categories to abelian groups, its stabilization is defined as: $F^{st} = \lim_{n \to \infty} F(S^{(n)})[-n]$, where $S^{(n)}$ is Waldhausen's S construction for exact categories ([17]) iterated n times. This can be thought of as a generalization of the bar construction for abelian groups, and hence this stabilization is a direct transliteration of the Dold-Puppe stable derived functors ([4]) to the setting of exact categories. Our method of computation for the stabilized functors is first to relate them to a stabilized version of the cohomology of small categories in the sense of [2] and then to relate this to Mac Lane homology much in the manner of [9].

There is a functor S_* from exact categories to categories of exact categories such that S_A is the smallest subcategory of all exact categories containing A which is closed under isomorphisms and taking Waldhausen's S. construction (see section 0 for more details). Let R be a ring and let M be an R-bimodule. Let M be the category of all (right) R-modules and let P be the full category of finitely generated projective R-modules. We write S_I for S_* of the exact inclusion functor $I: \mathcal{P} \longrightarrow \mathcal{M}$, and similarly S_M for S_* of the exact functor $\star \otimes_R M$ from P to M. Let $Q_*(R)$ be Mac Lane's Q-construction ([10]).

Received by the editors February 14, 1996 and, in revised form, January 19, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 19D55, 55U99, 18G99.

Research supported in part by National Science Foundation grant DMS 94-15615 and a Sloan Fellowship.

Theorem (4.1). Let G be the functor from $S_{\mathcal{P}}$ to abelian groups defined by

$$G(\mathcal{A}) = \bigoplus_{A \in \mathcal{A}} \bigotimes_{i=1}^{n} Hom_{\mathcal{S}_{I}(\mathcal{A})}(\mathcal{S}_{I}(A), \mathcal{S}_{M}(A)).$$

Then G^{st} is completely determined by its value at \mathcal{P} , and

$$G^{st}(\mathcal{P}) \sim_{\Sigma_n} \mathbf{Z}[\Sigma_n] \otimes_{\mathbf{Z}[C_n]} HH\left(Q_*(R)^{\otimes n}; M_{\tau}^{\otimes n}\right)$$

where HH is the Hochschild homology complex for $Q_*(R)^{\otimes n}$ acting on the bimodule by

$$(m_1 \otimes \cdots \otimes m_n) * (q_1 \otimes \cdots \otimes q_n) = (m_1 q_1 \otimes m_2 q_2 \otimes \cdots \otimes m_n q_n),$$

$$(q_1 \otimes \cdots \otimes q_n) * (m_1 \otimes \cdots \otimes m_n) = (q_n m_1 \otimes q_1 m_2 \otimes \cdots \otimes q_{n-1} m_n),$$

and C_n is the cyclic group of n elements which acts by cyclic permutations—the equivalence is weakly Σ_n -equivariant.

The paper is organized as follows. In section 0 we recall some terminology from [17] and establish some notation. In section 1 we show how to reduce the computation of relative algebraic K-theory of dual numbers rationally to that of the stabilization of functors like G in the above proposition. In section 2 we generalize a result of [7] to rewrite these in terms of a suitably stabilized cohomology of small categories. In section 3 we further reduce these models to appropriate (no longer stabilized) cohomology of small categories. In section 4 we reinterpret these results in terms of Mac Lane homology following the ideas of [9].

0. Preliminaries—making a functor additive by stabilization

In this section we recall the definition of the S construction from [17] and establish some notation. We then recall the notion of *stabilization* for functors from exact categories to chain complexes as introduced in [14].

For $q \in \mathbb{N}$, let [q] denote the poset $\{0 < \cdots < q\}$, which we will often view as a category. For \mathcal{C} (small) and \mathcal{D} categories, let $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ be the category of functors from \mathcal{C} to \mathcal{D} and morphisms the natural transformations of these. For \mathcal{D} a category, let the arrow category, $\operatorname{Ar} \mathcal{D}$, be $\operatorname{Fun}([1], \mathcal{D})$.

Let \mathcal{E} be an exact category considered as a category with cofibrations ([17], first few lines) by setting the subcategory of cofibrations to be the admissible monomorphisms. We let $\operatorname{Ex}(\operatorname{Ar}[q],\mathcal{E})$ be the full subcategory of $\operatorname{Fun}(\operatorname{Ar}[q],\mathcal{E})$ whose objects are the functors F such that $F(j \to j) = *$ and, for every triple $i \le j \le k$ in [q],

$$F(i \to j) \to F(i \to k) \to F(j \to k)$$

is a short exact sequence. Setting $S_{[q]}\mathcal{E} = \operatorname{Ex}(\operatorname{Ar}[q],\mathcal{E})$, we obtain a simplicial exact category, and we write $S\mathcal{E}$ for both this simplicial exact category and the associated simplicial set we obtain by taking the set of objects degreewise. We can iterate the S construction, and we write $\mathbf{K}\mathcal{C}$ for the algebraic K-theory (pre-)spectrum of \mathcal{C} , $\mathbf{K}\mathcal{C} = \{|S^{(n)}\mathcal{C}|\}_{n\geq 0}$ (with structure maps constructed by the natural isomorphism $\mathcal{C} \cong S_1\mathcal{C}$).

Conventions: We will make no notational distinction between a (multi-dimensional) simplicial abelian group and its associated (multi-dimensional) chain complex. By a *chain complex* we will always mean a complex which is bounded below and homologically trivial in negative dimensions (i.e. connective). Given a multi-dimensional

chain complex, we will consider it as a chain complex by taking *Tot* (using products). What follows has standard generalizations to various categories with cofibrations; but as these extensions are "straightforward" for the expert and do little more than cloud the essential ideas, we will keep our attention to exact categories.

Let F be any functor from (small) linear categories (with a distinguished zero object 0) to chain complexes. It will be convenient for us to assume further that F is reduced. That is, that F(0) = 0. We will always think of an abelian group as a chain complex concentrated in dimension 0.

We note that we are <u>not</u> assuming that F takes naturally equivalent linear categories to homotopic chain complexes. If F does this, we will say that F is an equivalence functor. If G is any functor from some category C of categories to (small) simplicial linear categories, then we can of course compose functors to obtain a new functor FG from C to simplicial chain complexes, which we once again consider as a functor to chain complexes by taking Tot. By definition, if A_* is a simplicial (small) linear category, then FA_* is the simplicial chain complex obtained by applying F degreewise.

We will say that F is product preserving if for any two (small) exact categories \mathcal{A} and \mathcal{B} , the natural projection map ρ of simplicial abelian groups $F(\mathcal{A} \times \mathcal{B})$ to $F(\mathcal{A}) \times F(\mathcal{B})$ is a homotopy equivalence. We will say that F is a p-product functor if F preserves products in a range $0 \leq i \leq p$ (that is, $\pi_i(\rho)$ is an isomorphism for all $0 \leq i \leq p$). By the proof of additivity found in [12], for any F

$$FS.S_2\mathcal{C} \stackrel{d_0 \times d_2}{\longrightarrow} FS.(\mathcal{C} \times \mathcal{C})$$

is an equivalence. If F is a p-product functor, then the natural map $F(SS_2) \xrightarrow{d_0 \times d_2} FS \times FS$ is an equivalence in a p-range. If $FS_2 \longrightarrow F \times F$ is an equivalence in a p range, then we say that F is additive in a p range.

Lemma (1.5 of [14]). For any $n \ge 1$, the functor $FS^{(n)}$ is a reduced equivalence functor which is a 2n-1 product functor and additive in a 2n-1 range.

For X a chain complex, we let X[z] be the new chain complex with $X[z]_n = X_{n-z}$ and $\partial[z]_n = \partial_{n-z}$.

Definition (0.1). For any exact category, we define

$$F_*^{st}(\mathcal{A}) = \lim_{n \to \infty} FS^{(n)}\mathcal{A}[-n],$$

which is a natural additive equivalence functor. We let $\alpha: F \to F^{st}$ be the natural transformation obtained by the structure maps for the limit system. By lemma 1.7 of [14], F is an additive functor (additive in an ∞ -range) if and only if $F \to F^{st}$ is an equivalence for all exact categories.

Examples. 1) Let **Z** be the functor which takes a (small) category \mathcal{C} to the reduced free abelian group generated by the set of objects of \mathcal{C} . That is,

$$\mathbf{Z}(\mathcal{C}) = cokernel[\mathbf{Z}[0] \to \mathbf{Z}[Obj(\mathcal{C})]].$$

Then, by [14], \mathbf{Z}^{st} is the stable homology functor and

$$H_*(\mathbf{Z}^{st}(\mathcal{C})) = H_*(\mathbf{K}(\mathcal{C})) = \pi_*(\mathbf{K}(\mathcal{C}) \wedge \mathbf{HZ}).$$

2) Let \mathcal{A} be an exact category. Let **Hom** be the functor defined by

$$\mathbf{Hom}(\mathcal{A}) = \bigoplus_{A \in \mathcal{A}} Hom_{\mathcal{A}}(A, A).$$

Then, by [6],

$$\mathbf{Hom}^{st}(\mathcal{A}) = THH(\mathcal{A}),$$

where THH is the topological Hochschild homology of A.

If F is a functor defined on a subcategory S of all exact categories, then in order for F^{st} to still be defined we simply need that if $A \in \mathcal{S}$ then S.A is a simplicial \mathcal{S} -object. In what follows we will need to restrict ourselves to functors defined on such subcategories of all exact categories. In particular, if A is an exact category we let $\mathcal{S}_{\mathcal{A}}$ be the smallest subcategory which contains \mathcal{A} , is closed under taking S.A (that is, S.A is a simplicial S_A object) and is closed under isomorphisms (if an exact category \mathcal{E} is isomorphic to an exact category in $\mathcal{S}_{\mathcal{A}}$ then it is in $\mathcal{S}_{\mathcal{A}}$). The category $\mathcal{S}_{\mathcal{A}}$ is skeletally small and is equivalent to the category with objects $S_{n_1}S_{n_2}\cdots S_{n_t}A$ for all $t\geq 0$ and finite sequences (n_1,\ldots,n_t) of non-negative integers with morphisms those determined by the S. construction. In this way we see that for any exact functor $F: \mathcal{A} \longrightarrow \mathcal{B}$ we get a functor $\mathcal{S}_F: \mathcal{S}_{\mathcal{A}} \longrightarrow \mathcal{S}_{\mathcal{B}}$ determined by $S_{n_1}S_{n_2}\cdots S_{n_t}F$ for each finite sequence (n_1,\ldots,n_t) of non-negative integers. Thus, S_* is a functor from the category of exact categories to (skeletally small) categories of exact categories. For F an exact functor from \mathcal{A} to \mathcal{B} , $\mathcal{E} \in \mathcal{S}_{\mathcal{A}}$ and E an object of \mathcal{E} , we abuse notation as follows: \mathcal{S}_F is a functor from \mathcal{S}_A to \mathcal{S}_B which produces a functor $S_F|_{\mathcal{E}}$ from \mathcal{E} to $S_F(\mathcal{E})$, and we set

$$S_F(E) = S_F|_{\mathcal{E}}(E) \in S_F(\mathcal{E}).$$

Example. 3) Let R be a ring and let M be an R-bimodule. Let \mathcal{M} be the category of all (right) R-modules and let \mathcal{P} be the full category of finitely generated projective R-modules. Let I be the exact inclusion functor $I: \mathcal{P} \longrightarrow \mathcal{M}$ and let M be the exact functor $\star \otimes_R M$ from \mathcal{P} to \mathcal{M} . Let M be the functor from $\mathcal{S}_{\mathcal{P}}$ to abelian groups defined by

$$\mathbf{M}(\mathcal{A}) = \bigoplus_{A \in \mathcal{A}} Hom_{\mathcal{S}_I(\mathcal{A})}(\mathcal{S}_I(A), \mathcal{S}_M(A)).$$

By section 2 of [5],

$$\mathbf{M}^{st}(\mathcal{A}) = THH(R; M),$$

where THH(R, M) is the topological Hochschild homology of the ring spectrum \mathbf{HR} with coefficients in the bimodule \mathbf{HM} .

1. On the computation of
$$\tilde{K}(R \oplus M)_{\mathbf{Q}}$$

Definition. Following [5], for R a ring, M an R-bimodule and X a space (= finite pointed simplicial set) we define $\tilde{\mathbf{K}}(R, \tilde{M}[X])$ to be the connective (pre-)spectrum:

$$\tilde{K}(R,\tilde{M}[X])(n) = \left| [p] \times [q] \mapsto \bigvee_{\bar{P} \in S_q^{(n)}\mathcal{P}} Hom_{S_q^{(n)}\mathcal{M}}(\bar{P},\bar{P} \otimes_R \tilde{M}[X_p]) \right|,$$

where \mathcal{P} is the exact category of finitely generated R-modules, \mathcal{M} the exact category of all R-modules and $\tilde{M}[X_p] = \bigoplus_{X_p - \text{basept}} M$. By section 4 of [5], if we let $R \oplus M$

be the ring with multiplication defined by (r, m)(r', m') = (rr', rm' + mr'), then $\mathbf{K}(R \oplus M)$ is naturally equivalent to $\mathbf{K}(R) \times \tilde{\mathbf{K}}(R; \tilde{M}[S^1])$.

For any connective spectrum (of CW-type), the Hurewicz map produces an isomorphism from the rational homotopy groups of the spectrum to its rational homology groups (see for example page 203 of [1]). Thus,

$$\pi_{n}(\tilde{\mathbf{K}}(R \oplus M)) \otimes_{\mathbf{Z}} \mathbf{Q} \cong \pi_{n}\tilde{\mathbf{K}}(R; \tilde{M}[S^{1}]) \otimes_{\mathbf{Z}} \mathbf{Q}$$

$$\stackrel{\cong}{\longrightarrow} \lim_{k \to \infty} H_{n+k}(|[p] \times [q] \mapsto \bigvee_{\bar{P} \in S_{q}^{(k)} \mathcal{P}} Hom_{S_{q}^{(k)} \mathcal{M}}(\bar{P}, \bar{P} \otimes_{R} \tilde{M}[X_{p}])|; \mathbf{Q}).$$

In general, for any (simplicial) bimodule M and abelian group G, we obtain

$$H_{n}(\tilde{\mathbf{K}}(R;M);G) \simeq \lim_{k \to \infty} \pi_{n+k}|[q] \mapsto \tilde{G} \left[\bigvee_{\bar{P} \in S_{q}^{(k)}\mathcal{P}} Hom_{S_{q}^{(k)}\mathcal{M}}(\bar{P},\bar{P} \otimes_{R} M) \right]|$$

$$\simeq \lim_{k \to \infty} \pi_{n+k}|[q] \mapsto \bigoplus_{\bar{P} \in S_{q}^{(k)}\mathcal{P}} \tilde{G} \left[Hom_{S_{q}^{(k)}\mathcal{M}}(\bar{P},\bar{P} \otimes_{R} M) \right]|$$

$$= \tilde{G}[M]^{st}(\mathcal{P}),$$

where $\tilde{G}[M]$ is the functor from $\mathcal{S}_{\mathcal{P}}$ to simplicial abelian groups defined by

$$\tilde{G}[M](\mathcal{A}) = \bigoplus_{A \in \mathcal{A}} \tilde{G}[Hom_{\mathcal{S}_I(\mathcal{A})}(\mathcal{S}_I(A), \mathcal{S}_M(A))]$$

and $G[M]^{st}$ is defined as in 0.1. Putting these remarks together, we obtain the following proposition.

Proposition (1.1). For any ring R and R-bimodule M,

$$\pi_n(\tilde{\mathbf{K}}(R \oplus M)) \otimes_{\mathbf{Z}} \mathbf{Q} \cong H_n(\tilde{\mathbf{Q}}[B.M]^{st}(\mathcal{P})),$$

where $B.M = \tilde{M}[S^1]$ is the usual bar construction for the abelian group M considered as a simplicial R-bimodule.

To examine $\tilde{\mathbf{Q}}[B.M]$, we first recall some well known results. If G is an abelian group, we let $p^n: G \longrightarrow G^{\otimes n}$ be the map of pointed sets defined by

$$p^n(g) = \overbrace{g \otimes \cdots \otimes g}^{n \text{ times}}.$$

We abuse notation, and also write p^n for the composed map

$$G \xrightarrow{p^n} G^{\otimes n} \xrightarrow{\rho} G_{\mathbf{Q}} \otimes \cdots \otimes G_{\mathbf{Q}} \otimes_{\mathbf{Q}[\Sigma_n]} \mathbf{Q} = S^n(G_{\mathbf{Q}}),$$

where $G_{\mathbf{Q}} = G \otimes_{\mathbf{Z}} \mathbf{Q}$, ρ is the natural map and Σ_n acts on the tensor product by permuting factors. Extending by linearity, we obtain a natural transformation of functors from abelian groups to rational vector spaces

$$\tilde{\mathbf{Q}}[G] \stackrel{p}{\longrightarrow} \prod_{n \in \mathbf{N}} S^n(G_{\mathbf{Q}}).$$

We extend p to simplicial abelian groups by evaluating everything degreewise.

In general, the map p is not an isomorphism, but it is an equivalence for 0–connected simplicial abelian groups. One can see this as follows. First we recall that (see for example theorem V.7.6 of [18])

$$H_*(K(\mathbf{Z}/m\mathbf{Z};1);\mathbf{Q}) = \begin{cases} \mathbf{Q}, & i = 0, \\ \mathbf{Q}, & i = 1 \text{ and } m = 0, \\ 0, & \text{otherwise.} \end{cases}$$

By the Künneth theorem, this implies that

$$H_n(K(G;1), \mathbf{Q}) = (G_{\mathbf{Q}} \otimes \cdots \otimes G_{\mathbf{Q}})^{sgn} \otimes_{\mathbf{Q}[\Sigma_n]} \mathbf{Q} = \bigwedge^n (G_{\mathbf{Q}}),$$

where ()^{sgn} indicates we are now taking the Σ_n action with signs and so \bigwedge^n is the *n*-th exterior power. Now, $S^n(B.G_{\mathbf{Q}})$ is simply $B^nG_{\mathbf{Q}}^{\otimes n}/\Sigma_n$, which (because the action of Σ_n on the deloopings gives a signed action on the homotopy groups) is simply $B^n((G_{\mathbf{Q}}^{\otimes n})^{sgn}/\Sigma_n)$ (we are over \mathbf{Q}), and hence the result (after checking that the given transformation does indeed provide the correct map).

Corollary (1.2). Putting together the above remarks, we see that

$$(\tilde{\mathbf{Q}}[B.M])^{st} \stackrel{\simeq}{\longrightarrow} \bigoplus_{n=1}^{\infty} (S^n[B.M_{\mathbf{Q}}])^{st}.$$

Next, we recall that since we are working over the rationals, a Σ_n equivariant map which is also a weak equivalence is a weak equivalence on the map of orbits (since $|\Sigma_n| = n!$ is invertible). Let $T^n(M)$ be the functor from $\mathcal{S}_{\mathcal{P}}$ to $\mathbf{Z}[\Sigma_n]$ -modules defined by

$$T^{n}(M)(\mathcal{A}) = \bigoplus_{A \in \mathcal{A}} \bigotimes_{i=1}^{n} Hom_{\mathcal{S}_{I}(\mathcal{A})}(\mathcal{S}_{I}(A), \mathcal{S}_{M}(A)).$$

The following is a special case of the more general result in (4.1):

Proposition (1.3). Let $Q \subseteq R$. Then

$$T^n(B.M)^{st}(\mathcal{P}) \sim_{\mathbf{Q}[\Sigma_n]} \mathbf{Q}[\Sigma_n] \otimes_{\mathbf{Q}[C_n]} HH(R^{\otimes n}; B.M_{\tau}^{\otimes n}),$$

where HH is the Hochschild homology and τ indicates the cyclic twisted action of $R^{\otimes n}$ on $X^{\otimes n}$ from the introduction. The cyclic group of order n, C_n , acts by permuting tensor factors. Hence

$$S^{n}(B.M)^{st}(\mathcal{P}) \simeq HH(R^{\otimes n}; B.M_{\tau}^{\otimes n})]/C_{n}$$

and

$$\frac{K(R \oplus M)}{K(R)} \simeq_{\mathbf{Q}} \bigoplus_{n=1}^{\infty} HH(R^{\otimes n}; B.M_{\tau}^{\otimes n})]/C_{n}.$$

Remark. Using the techniques of [13] and the explicit maps used to obtain the above result, it is straightforward to show that the trace map from algebraic K-theory to negative homology used in [8] produces the needed isomorphism on relative theories after tensoring with the rationals. Since our objective here is to study the stabilized tensor functors, we will only give a brief outline below of how this can be done, and leave further details to the interested reader.

Aside (1.4). On the rational equivalence of relative algebraic K-theory and relative negative cyclic homology.

The natural ring map $R \longrightarrow R \oplus M$ (taking r to (r,0)) produces a natural exact functor $\epsilon_M : \mathcal{P}_R \longrightarrow \mathcal{P}_{R \oplus M}$. By page 218 of [15] we have a natural transformation Φ of functors from $\mathcal{S}_P \times R\text{-}Mod\text{-}R$ to cyclic $\mathbf{Q}\text{-}$ modules

$$\Phi: \tilde{\mathbf{Q}}[N^{cy}*](\star) \longrightarrow HH(\mathcal{S}_{\epsilon_*}\star).$$

One always has a natural simplicial map ρ from B.M to $N^{cy}M$ defined by sending (m_1, \ldots, m_n) to $(-(\Sigma_i m_i), m_1, \ldots, m_n)$, and the following diagram commutes (section 4 of [15]):

$$\mathbf{K}(R \oplus M) \xrightarrow{trace} HH(R \oplus M)$$

$$\downarrow \qquad \qquad \qquad \uparrow \Phi$$

$$\tilde{\mathbf{Q}}[B.M]^{st}(\mathcal{P}) \xrightarrow{\rho} \tilde{\mathbf{Q}}[N^{cy}M]^{st}(\mathcal{P})$$

(the left vertical map is the composite of the equivalence from [5] with the Hurewicz map). In general, one can decompose $HH(R \oplus M)$ as the direct sum of cyclic abelian groups $\bigoplus_{i=0}^{\infty} HH^{[i]}(R|M)$, where $HH^{[i]}(R|M)_{[p]}$ is the submodule of $HH(R \oplus M)_{[p]}$ determined by sums of tensors $(x_0 \otimes \cdots \otimes x_n)$ with exactly i of the x_j 's in M. One can extend this definition to $HN^{[i]}(S_{\epsilon_*\star})$ as a functor from S_P to (unbounded) chain complexes which is once again additive. For each $n \geq 0$ we obtain a factorization (up to equivalence)

$$\tilde{\mathbf{Q}}[N^{cy}*](\star) \xrightarrow{\Phi} HH(\mathcal{S}_{\epsilon_*}(\star))
\downarrow p^n \qquad \qquad \downarrow \pi
T^n(N^{cy}*)(\star) \longrightarrow HH^{[n]}(\mathcal{S}_{\epsilon_*}(\star))
\uparrow_{inc} \qquad \qquad \uparrow
F^n(N^{cy}*)(\star) \longrightarrow HN^{[n]}(\mathcal{S}_{\epsilon_*}(\star))$$

 $(p^n \text{ takes } [m] \text{ to } m \otimes \cdots \otimes m)$. In the above diagram, $F^n = (\bigotimes^n)^{\Sigma_n}$, where the Σ_n action is given by permuting tensor factors and the map inc is given by the inclusion $F^n \longrightarrow T^n$. Since we are working over \mathbf{Q} , the norm map from S^n to F^n is an equivalence which corresponds to the map from cyclic homology (orbits) to negative homology (fixed points), being an equivalence in this situation. By looking carefully at the computation for $HN(R \oplus M)$ in [8], one sees that the composite map $F^n(B.*)(\star)^{st} \stackrel{\rho}{\longrightarrow} HN^{[n]}(S_{\epsilon_*}\star)^{st} \stackrel{\simeq}{\longleftarrow} HN^{[n]}(S_{\epsilon_*}\star)$ is a rational equivalence, and hence the lift of the trace map to negative cyclic homology is rationally a relative equivalence for split square zero ring extensions.

This ends aside 1.4.

2. A RELATION BETWEEN STABILIZED FUNCTORS AND STABILIZED HOMOLOGY OF SMALL CATEGORIES

In this section we slightly generalize a result from [7] which relates the stabilization (in the sense of 0.1) of a small class of functors to their appropriately stabilized Hochschild-Mitchell homology.

Definition. (See [2].) Let \mathcal{A} be a small category and let $D: \mathcal{A}^{op} \times \mathcal{A} \to Ab$ be a bifunctor from \mathcal{A} to abelian groups. We let $F_*(\mathcal{A}; D)$ be the simplicial abelian

group defined by setting

$$F_p(\mathcal{A}; D) = \bigoplus_{\vec{A} \in N_p \mathcal{A}} D(A_1, A_0), \qquad \vec{A} = A_1 \stackrel{\alpha_1}{\longleftarrow} \cdots \stackrel{\alpha_p}{\longleftarrow} A_0.$$

If we represent an element of one component by $(g; \alpha_1, \ldots, \alpha_p)$, then the face and degeneracy operators are given by

$$d_{i}(g; \alpha_{1}, \dots, \alpha_{p}) = \begin{cases} (D(\alpha_{1}, id)(g); \alpha_{2}, \dots, \alpha_{p}), & i = 0, \\ (g; \dots, \alpha_{i}\alpha_{i+1}, \dots \alpha_{p}), & 1 \leq i \leq p-1, \\ (D(id, \alpha_{p})(g); \alpha_{1}, \dots, \alpha_{p-1}), & i = p, \end{cases}$$

$$s_{i}(g; \alpha_{1}, \dots, \alpha_{p}) = \begin{cases} (g; \dots, \alpha_{i}, id_{A_{i+1}}, \alpha_{i+1}, \dots), & 0 \leq i \leq p-1, \\ (g; \alpha_{1}, \dots, \alpha_{p}, id_{A_{0}}), & i = p. \end{cases}$$

The homology of $F_*(\mathcal{C}; D)$ is the *Hochschild-Mitchell* homology of the category \mathcal{C} with coefficients in the bifunctor D.

Definition. Let \mathcal{E} be an exact category. A local coefficient system G (at \mathcal{E}) associates a bifunctor $G_{\mathcal{A}}$ from $\mathcal{A}^{op} \times \mathcal{A}$ to simplicial abelian groups for each $\mathcal{A} \in \mathcal{S}_{\mathcal{E}}$ such that

- (i) $G_{\mathcal{A}}$ is bireduced—G(0,A)=0=G(A,0) for all $A\in\mathcal{A}$
- (ii) G is natural—for every morphism $F: \mathcal{A} \longrightarrow \mathcal{B}$ in $\mathcal{S}_{\mathcal{E}}$, there is a natural transformation of bifunctors $G_F: G_{\mathcal{A}} \longrightarrow G_{\mathcal{B}}$ such that $G_{id} = id$ and $G_{F \circ F'} = G_F \circ G_{F'}$.

Example. If M_1, \ldots, M_n are R-bimodules, we have a local coefficient system $G(M_1, \ldots, M_n)$ at \mathcal{P} given by

$$G_{\mathcal{A}}(A, A') = \bigotimes_{i=1}^{n} Hom_{\mathcal{S}_{I}(\mathcal{A})}(\mathcal{S}_{I}(A), \mathcal{S}_{M_{i}}(A')).$$

Notation. Let G be a local coefficient system for \mathcal{E} . By naturality, $F_*(\star, G_*)$ is a functor from $S_{\mathcal{E}}$ to simplicial abelian groups. For the purposes of proposition 2.1 below we will simply write $F_*(S^{(k)})$ for the k+1-simplicial abelian group determined by $F_*(S^{(k)}A; G)$ when A and G are clear. Let δ be the natural transformation given by degeneracies from F_0 to F_* .

Proposition (2.1) (similar to [6] for the case G(R)). Let G be a local coefficient system for \mathcal{E} . The natural transformation $\delta(S^{(N)})$ from $F_0(S^{(N)})$ to $F_*(S^{(N)})$ is 2N-1-connected, and hence δ^{st} (as in 0.1) is an equivalence.

Proof. More generally, we show that for all $n \in \mathbb{N}$, the map from $F_0S^{(N)}\mathcal{A}$ to $F_nS^{(N)}\mathcal{A}$ given by degeneracies is 2N-1-connected, which implies the result by a standard spectral sequence argument. Let c be the natural transformation from F_n to F_0 defined by sending $(g;\alpha_1,\ldots,\alpha_n)$ to $(G(\alpha_1\cdots\alpha_n;id)(g))$. Since $c\circ deg=id_{F_0}$, it suffices to show that $C=deg\circ c$ agrees with the identity in a 2N-1 range when we include $S^{(N)}$ into the picture. In other words, we want to show that the simplicial self map C of $F_nS^{(N)}\mathcal{A}$ defined by sending $(g;\alpha_1,\ldots,\alpha_n)$ to $(G(\alpha_1\cdots\alpha_n;id)(g);id_{C_0},\ldots,id_{C_0})$ is 2N-1 connected. To prove this we are going to use the fact that $F_nS^{(N)}$ satisfies additivity in

To prove this we are going to use the fact that $F_nS^{(N)}$ satisfies additivity in a 2N-1 range. We construct three natural transformations T_{id} , T_{-c} and T_t

from F_n to F_nS_2 , which then assemble to give simplicial maps from $F_nS^{(N)}A$

to $F_nS^{(N)}S_2A$. We define T_{id} , T_{-c} and T_t as follows. Let $\vec{\alpha} = (g; C_1 \stackrel{\alpha_1}{\longleftarrow} \cdots \stackrel{\alpha_n}{\longleftarrow} C_0)$ be an element of $F_n(A; G)$ and let $\alpha_{i\cdots j}$ be the composite $\alpha_i\alpha_{i+1}\cdots\alpha_j$. Then

$$T_{id}(\vec{\alpha}) = \begin{bmatrix} C_0 & = & C_0 & = & \dots & = & C_0 & \longleftarrow & 0 \\ \downarrow^{i_{C_0}} & & \downarrow^{i_{C_0}} & & & & \downarrow^{i_{C_0}} & & \downarrow \\ G(1)(g); & C_0 \oplus C_1 & \stackrel{1 \oplus \alpha_1}{\longleftarrow} & C_0 \oplus C_2 & \stackrel{1 \oplus \alpha_2}{\longleftarrow} & \dots & \stackrel{1 \oplus \alpha_{n-1}}{\longleftarrow} & C_0 \oplus C_n & \stackrel{1,\alpha_n}{\longleftarrow} & C_0 \\ \downarrow^{\pi_{C_1}} & & & \downarrow^{\pi_{C_2}} & & & & \downarrow^{\pi_{C_n}} & & \parallel \\ C_1 & \stackrel{\alpha_1}{\longleftarrow} & C_2 & \stackrel{\alpha_2}{\longleftarrow} & \dots & \stackrel{\alpha_{n-1}}{\longleftarrow} & C_n & \stackrel{\alpha_n}{\longleftarrow} & C_0 \end{bmatrix},$$

$$T_{-c}(\vec{\alpha}) = \begin{bmatrix} C_1 & \stackrel{\alpha_1}{\longleftarrow} & C_2 & \stackrel{\alpha_2}{\longleftarrow} & \dots & \stackrel{\alpha_{n-1}}{\longleftarrow} & C_n & \longleftarrow & 0 \\ \downarrow^{i_{C_1}} & & \downarrow^{i_{C_2}} & & & & \downarrow^{i_{C_n}} & & \downarrow \\ G(2)(g); & C_1 \oplus C_0 & \stackrel{\alpha_1 \oplus 1}{\longleftarrow} & C_2 \oplus C_0 & \stackrel{\alpha_2 \oplus 1}{\longleftarrow} & \dots & \stackrel{\alpha_{n-1} \oplus 1}{\longleftarrow} & C_n \oplus C_0 & \stackrel{\alpha_n, 1}{\longleftarrow} & C_0 \\ \downarrow^{\pi_{C_0}} & & \downarrow^{\pi_{C_0}} & & & \downarrow & \downarrow^{\pi_{C_0}} & & \parallel \\ C_0 & = & C_0 & = & \dots & = & C_0 & = & C_0 \end{bmatrix}$$

$$T_{t}(\vec{\alpha}) = \begin{bmatrix} C_{0} & = & C_{0} & = & \dots & = & C_{0} & = & C_{0} \\ \downarrow^{i_{C_{0}},\alpha_{1}\dots_{n}} & \downarrow^{1_{C_{0}},\alpha_{2}\dots_{n}} & & & \downarrow^{i_{C_{0}},\alpha_{n}} & \parallel \\ \downarrow^{i_{C_{0}},\alpha_{1}\dots_{n}} & \downarrow^{\alpha_{1}\dots_{n-1}} & C_{0} \oplus C_{2} & \stackrel{1\oplus\alpha_{2}}{\longleftarrow} & \dots & \stackrel{1\oplus\alpha_{n-1}}{\longleftarrow} & C_{0} \oplus C_{n} & \stackrel{1,\alpha_{n}}{\longleftarrow} & C_{0} \\ \downarrow^{\alpha_{1}\dots_{n}-1} & \downarrow^{\alpha_{1}\dots_{n-1}-1} & & & \downarrow^{\alpha_{n}-1} & \downarrow \\ C_{1} & \stackrel{\alpha_{1}}{\longleftarrow} & C_{2} & \stackrel{\alpha_{2}}{\longleftarrow} & \dots & \stackrel{\alpha_{n-1}}{\longleftarrow} & C_{n} & \longleftarrow & 0 \end{bmatrix}.$$

The map G(1) is the natural group homomorphism

$$G(C_1, C_0) \to G \begin{pmatrix} C_0 & 0 \\ \downarrow^{i_{C_0}} & \downarrow \\ C_0 \oplus C_1, C_0 \\ \downarrow^{\pi_{C_1}} & \parallel \\ C_1 & C_0 \end{pmatrix}$$

given by the composite $G(\pi_{s_0(C_1)}, id) \circ G_{s_0}$, where $s_0 : S_1 \longrightarrow S_2$ is the degeneracy map taking C to $0 \to C = C$ and $\pi_{s_0(C_1)}$ is the projection map (of the direct sum)

$$\begin{pmatrix} C_0 \\ \downarrow^{i_{C_0}} \\ C_0 \oplus C_1 \\ \downarrow^{\pi_{C_1}} \\ C_1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ \downarrow \\ C_1 \\ \parallel \\ C_1 \end{pmatrix}.$$

The map G(2) is the natural group homomorphism

$$G(C_1, C_0) \to G \begin{pmatrix} C_1 & 0 \\ \downarrow^{i_{C_1}} & \downarrow \\ C_1 \oplus C_0, C_0 \\ \downarrow^{\pi_{C_0}} & \parallel \\ C_0 & C_0 \end{pmatrix}$$

given by the composite $(-1)G(\pi_{s_0(C_0)}, id) \circ G_{s_0} \circ G(\alpha_{1\cdots n}, id)$. The map G(3) is the difference of two natural maps $G_1(3)$ and $G_2(3)$

$$G(C_1, C_0) \to G \begin{pmatrix} C_0 & C_0 \\ \downarrow^{i_{C_0}, \alpha_1 \dots , ||} \\ C_0 \oplus C_1, & C_0 \\ \downarrow^{\alpha_1 \dots , n-1} \downarrow \\ C_1 & 0 \end{pmatrix}.$$

The map $G_1(3)$ is given by the composite

$$G\begin{pmatrix} \alpha_{1\cdots n} \\ \pi_{C_1} \\ 0 \end{pmatrix} \circ G_{s_1}$$

and the map $G_2(3)$ is given by the composite

$$G(\pi_{s_1(C_0)}) \circ G_{s_1} \circ G(\alpha_{1\cdots n}, id).$$

Now we note the following relations:

$$d_0 T_{id} = id, \qquad d_0 T_{-c} = -C, \qquad d_0 T_t = 0,$$

$$d_1T_t = d_1T_{id} + d_1T_{-c},$$
 $d_2T_{id} = d_2T_{-c} = d_2T_t = 0.$

By additivity we obtain, in a 2N-1 range,

$$\begin{split} id - C &= d_0 T_{id} + d_0 T_{-c} \\ &= \left(d_0 T_{id} + d_2 T_{id} \right) + \left(d_0 T_{-c} + d_2 T_{-c} \right) \\ &\simeq d_1 T_{id} + d_1 T_{-c} \\ &= d_1 T_t \\ &\simeq d_0 T_t + d_2 T_t \\ &= 0, \end{split}$$

and hence the result.

3. Computation of the stabilized tensor products

In this section we compute the stabilization (in the sense of 0.1) of n-fold tensor product functors. Our second step in this calculation is a generalization of methods used in [5] for the special case when n = 1. If one is only interested in the rational case, this step can be greatly simplified by appealing to a multi-simplicial argument using complexes similar to Hochschild homology (for categories, as in [13])—which becomes very reminiscent of techniques in [8], section 4.

Let M_1, \ldots, M_n be fixed R-bimodules and let $G(M_1, \ldots, M_n)$ (or just G when M_1, \ldots, M_n are clear) be the local coefficient system of section 2 given by

$$G(\mathcal{A})(A, A') = \bigotimes_{i=1}^{n} Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I(A), \mathcal{S}_{M_i}(A')).$$

For $\sigma \in \Sigma_n$ (where Σ_n is the group of permutations on n-letters) we let

(3.1)
$$\sigma_*: G(M_1,\ldots,M_n) \to G(M_{\sigma(1)},\ldots,M_{\sigma(n)})$$

be the evident natural transformation by rearranging the *n*-fold tensor product.

We will simply write F_*^n for $F_*(\mathcal{A}; G)$ in this section. Thus:

$$[p] \longrightarrow F_p^n \equiv \bigoplus_{\vec{A} \in N_p \mathcal{A}} \bigotimes_{i=1}^n Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I A_1, \mathcal{S}_{M_i} A_0),$$
$$\vec{A} = A_1 \longleftarrow \cdots \longleftarrow A_n \longleftarrow A_0,$$

with the face and degeneracy operators as defined before.

For $\sigma \in \Sigma_n$, we let $F^{\sigma} \mathcal{A}$ be the simplicial abelian group:

$$[p] \longrightarrow F_p^{\sigma} \equiv \bigoplus_{\vec{A} \in N_p \mathcal{A}^n} Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I A_{1,1}, \mathcal{S}_{M_1} A_{0,\sigma(1)})$$

$$\otimes \cdots \otimes Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I A_{1,n}, \mathcal{S}_{M_n} A_{0,\sigma(n)}).$$

$$\vec{A} = \{A_{1,i} \longleftarrow \cdots \longleftarrow A_{n,i} \longleftarrow A_{0,i}\}_{i=1}^n$$

with face and degeneracy operators like those for \mathbb{F}^n only being careful about order. We define

$$F^{\Sigma_n} = \bigoplus_{\sigma \in \Sigma_n} F^{\sigma}.$$

We define a map of simplicial abelian groups $\psi_{\sigma}: F^n \longrightarrow F^{\sigma}$ by taking the indexing nerve to the diagonal of the product and $\alpha \in \bigotimes_{i=1}^n Hom_{\mathcal{S}_I\mathcal{A}}(\mathcal{S}_IA_1, \mathcal{S}_{M_i}A_0)$ to itself. We define the natural transformation Δ from F^n to F^{Σ_n} by $\Delta = \bigoplus \psi_{\sigma}$. There is a natural Σ_n -action on F^n given by permuting the n-fold tensors. To make Δ an equivariant map we give F^{Σ_n} a Σ_n -action by:

- (1) permuting the index set $N_p \mathcal{A}^n$,
- (2) rearranging the n-fold tensors, and
- (3) conjugation on the indexing element of Σ_n .

Thus,
$$(\alpha_1, \ldots, \alpha_n; \sigma) * \tau = (\alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}; \tau^{-1} \sigma \tau).$$

So far, everything is well defined for an arbitrary linear category. Now we define $\phi_{\sigma}: F^{\sigma} \longrightarrow F^{n}$, which is a natural transformation of exact functors which preserve a chosen \oplus -action. We define ϕ_{σ} of $(\{A_{1,i} \stackrel{\beta_{1,i}}{\longleftarrow} \cdots \stackrel{\beta_{n,i}}{\longleftarrow} A_{0,i}\}_{i=1}^{n}; \gamma_{1} \otimes \cdots \otimes \gamma_{n})$ to be

$$\left(\bigoplus A_{1,i} \stackrel{\bigoplus \beta_{1,i}}{\longleftarrow} \cdots \stackrel{\bigoplus \beta_{n,i}}{\longleftarrow} A_{0,i} ; \tilde{\gamma}_1 \otimes \cdots \otimes \tilde{\gamma}_n\right)$$

where

$$\gamma_j \in Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I A_{1,j}, \mathcal{S}_{M_j} A_{0,\sigma(j)})$$

and

$$\tilde{\gamma}_{j} \in Hom_{\mathcal{S}_{I}\mathcal{A}}\left(\mathcal{S}_{I} \bigoplus A_{1,i}, \mathcal{S}_{M_{j}} \bigoplus A_{0,i}\right)$$

is the unique morphism (as a natural transformation for all γ_j) which is γ_j and zeros elsewhere (using the identification $S_{M_j} \bigoplus A_{0,i} \cong \bigoplus S_{M_j} A_{0,i}$). We define $\phi: F^{\Sigma_n} \longrightarrow F^n$ by $\phi = \Sigma \phi_{\sigma}$.

Proposition (3.2). The maps Δ and ϕ are homotopy inverses of each other.

Proof. The proof of this proposition is in several steps. Our proof uses three sub-lemmas. In each sub-lemma we will be constructing semi-simplicial homotopies (they satisfy the simplicial homotopy identities with respect to the face maps, see [11], section 5). Given a semi-simplicial homotopy $\{h_i\}$, one can construct a chain homotopy H by setting $H_n = \sum_{i=0}^n (-1)^i h_i$.

Sub-lemma~1.

$$\psi_{\sigma} \circ \phi_{\tau} \simeq \begin{cases} id, & \text{if } \sigma = \tau, \\ 0, & \text{if } \sigma \neq \tau. \end{cases}$$

We first note that $\psi_{\sigma} \circ \phi_{\tau}$ of $(\{A_{1,i} \stackrel{\beta_{1,i}}{\longleftarrow} \cdots \stackrel{\beta_{n,i}}{\longleftarrow} A_{0,i}\}_{i=1}^n; \gamma_1 \otimes \cdots \otimes \gamma_n)$ is

$$(\{\bigoplus A_{1,j} \stackrel{\bigoplus \beta_{1,j}}{\leftarrow} \cdots \stackrel{\bigoplus \beta_{n,j}}{\leftarrow} \bigoplus A_{0,j}\}_{i=1}^n ; \tilde{\gamma}_1 \otimes \cdots \otimes \tilde{\gamma}_n).$$

We construct a semi-simplicial homotopy h_t as follows. Let $\pi_u : \bigoplus_{i=1}^n A_{k,i} \longrightarrow A_{k,u}$ be the natural projection. We set h_t $(0 \le t \le n)$ of $(\{A_{1,i} \stackrel{\beta_{1,i}}{\longleftarrow} \cdots \stackrel{\beta_{n,i}}{\longleftarrow} A_{0,i}\}_{i=1}^n; \gamma_1 \otimes \cdots \otimes \gamma_n)$ to be

$$\left(\left\{A_{1,i} \stackrel{\beta_{1,i}}{\leftarrow} \cdots \stackrel{\beta_{t-1,i}}{\leftarrow} A_{t,i} \stackrel{\pi_i}{\leftarrow} \bigoplus_{j=0}^n A_{t,j} \stackrel{\bigoplus \beta_{t,i}}{\leftarrow} \cdots \stackrel{\bigoplus \beta_{n,i}}{\leftarrow} \bigoplus_{j=0}^n A_{0,j}\right\}_{i=1}^n; \hat{\gamma}_1 \otimes \cdots \otimes \hat{\gamma}_n\right),$$

where $\gamma_i \in Hom_{\mathcal{S}_I\mathcal{A}}(\mathcal{S}_IA_{1,i},\mathcal{S}_{M_i}A_{0,\sigma(i)})$ and $\hat{\gamma}_i \in Hom_{\mathcal{S}_I\mathcal{A}}(\mathcal{S}_IA_{1,i},\mathcal{S}_{M_i} \bigoplus A_{0,i})$ is the unique morphism which is γ_i and zeros elsewhere. One can check that this gives the desired homotopy. In particular, $d_{n+1}h_n$ is 0 if $\sigma \neq \tau$ and the identity if $\sigma = \tau$.

Let \mathcal{M}_n be the set of all set maps from $\{1,\ldots,n\}$ to itself. For each $\lambda \in \mathcal{M}_n$, we define θ^{λ} , a simplicial self map of $F^n \mathcal{A}$, by sending $(A_1 \stackrel{\beta_1}{\longleftarrow} \cdots \stackrel{\beta_n}{\longleftarrow} A_0 ; \gamma_1 \otimes \cdots \otimes \gamma_n)$ to

$$(A_1^{\oplus n} \overset{\beta_1^{\oplus n}}{\longleftarrow} \cdots \overset{\beta_n^{\oplus n}}{\longleftarrow} A_0^{\oplus n} ; \tilde{\gamma}_{1,\lambda(1)} \otimes \cdots \otimes \tilde{\gamma}_{n,\lambda(n)}),$$

where $\tilde{\gamma}_{i,j} \in Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I A_1^{\oplus n}, \mathcal{S}_{M_i} A_0^{\oplus n})$ is γ_i in the (i,j) position and zeros elsewhere. We let $\Theta = \sum_{\lambda \in \mathcal{M}_n} \theta^{\lambda}$.

Sub-lemma 2. $\Theta \simeq id_{F^n}$.

We define the semi–simplicial homotopy $\{h_i\}$ as follows. Let $\delta: A \longrightarrow A^{\oplus n}$ be the diagonal map. We set h_i of $(A_1 \stackrel{\beta_1}{\longleftarrow} \cdots \stackrel{\beta_n}{\longleftarrow} A_0; \gamma_1 \otimes \cdots \otimes \gamma_n)$ to be

$$(A_1^{\oplus n} \overset{\beta_1^{\oplus n}}{\longleftarrow} \cdots \overset{\beta_i^{\oplus n}}{\longleftarrow} A_{i+1}^{\oplus n} \overset{\delta}{\longleftarrow} A_{i+1} \overset{\beta_{i+1}}{\longleftarrow} \cdots \overset{\beta_n}{\longleftarrow} A_0 ; \bar{\gamma}_1 \otimes \bar{\gamma}_2 \otimes \cdots \otimes \bar{\gamma}_n),$$

where $\bar{\gamma}_j \in Hom_{\mathcal{S}_I \mathcal{A}}(\mathcal{S}_I \bigoplus A_1, \mathcal{S}_{M_j} A_0)$ is $\gamma_j \circ \mathcal{S}_I \pi_j$, where π_j is the natural projection of $\bigoplus A_1$ onto its j-th coordinate. It is clear that $d_0 h_0$ is the identity. Similarly, $d_{n+1}h_n = \Theta$, since $d_{n+1}h_n$ is

$$\left((A_1^{\oplus n} \overset{\beta_1^{\oplus n}}{\longleftarrow} \cdots \overset{\beta_n^{\oplus n}}{\longleftarrow} A_0^{\oplus n} ; \sum_{j_1=1}^n \tilde{\gamma}_{1,j_1} \otimes \cdots \otimes \sum_{j_n=1}^n \tilde{\gamma}_{n,j_n} \right)$$

and by multilinearity

$$\sum_{j_1=1}^n \tilde{\gamma}_{1,j_1} \otimes \cdots \otimes \sum_{j_n=1}^n \tilde{\gamma}_{n,j_n} = \sum_{j_1,\dots,j_n=1}^n \tilde{\gamma}_{1,j_1} \otimes \cdots \otimes \tilde{\gamma}_{n,j_n}$$
$$= \sum_{\lambda \in \mathcal{M}_n} \tilde{\gamma}_{1,\lambda(1)} \otimes \cdots \otimes \tilde{\gamma}_{n,\lambda(n)}.$$

Sub-lemma 3. $\theta^{\lambda} \simeq 0$ if λ is not surjective.

For $\lambda \in \mathcal{M}_n$, we let $[A]_{\lambda} \in Hom_{\mathcal{A}}(A^{\oplus n}, A^{\oplus n})$ be the morphism which is the identity in positions $(i, \lambda(i))$ for all $1 \leq i \leq n$ and zeros elsewhere. Suppose λ is not surjective and let $k \notin Image(\lambda)$. We define a semi-simplicial homotopy by setting h_i of $(A_1 \stackrel{\beta_1}{\longleftarrow} \cdots \stackrel{\beta_n}{\longleftarrow} A_0; \gamma_1 \otimes \cdots \otimes \gamma_n)$ to be

$$(A_1^{\oplus n} \overset{\beta_1^{\oplus n}}{\longleftarrow} \cdots \overset{\beta_i^{\oplus n}}{\longleftarrow} A_{i+1}^{\oplus n} \overset{[A_{i+1}]_{\lambda}}{\longleftarrow} A_{i+1}^{\oplus n} \overset{\beta_{i+1}^{\oplus n}}{\longleftarrow} \cdots \overset{\beta_n^{\oplus n}}{\longleftarrow} A_0^{\oplus n} ; \tilde{\gamma}_{1,1} \otimes \cdots \otimes \tilde{\gamma}_{n,n}).$$

Then $d_0h_0 = \theta^{\lambda}$ and $d_{n+1}h_n = 0$, since $k \neq \{1, \ldots, n\}$ implies that $[A_1]_{\lambda} \circ \tilde{\gamma}_{k,k} = 0$.

Proof of proposition 3.2. The composite map $\Delta \circ \phi$ is equal to $\Sigma \psi_{\sigma} \circ \phi_{\tau}$, which is homotopic to $\sum id_{\sigma}$ by sub-lemma 1. The composite map $\phi \circ \Delta$ is equal to $\sum \phi_{\sigma} \circ \psi_{\sigma} = \sum \theta^{\sigma}$, which by sub-lemma 3 is homotopic to Θ , which by sub-lemma 2 is homotopic to the identity.

We now define a new construction F^{S_n} . Let S_n be the *subset* of Σ_n consisting of cycles of length n. We note that S_n is an invariant subset by conjugation. Also, $|S_n| = (n-1)!$, and if we let $\omega = (1 \ 2 \dots n)$ then $S_n = \{\gamma^{-1}\omega\gamma | \gamma \in \Sigma_n\}$. We define F^{S_n} to be the subsimplicial abelian group of F^{Σ_n} determined by

$$F^{\mathcal{S}_n} = \bigoplus_{\sigma \in \mathcal{S}_n} F^{\sigma}.$$

We note that F^{S_n} is a Σ_n -invariant subsimplicial abelian group of F^{Σ_n} .

Lemma (3.3). If A_* is an n-reduced simplicial exact category, then $F^{S_n}A_* \longrightarrow F^{S_n}A_*$ is a 2n-1 connected map.

Proof. If σ can be written as the product of two disjoint cycles $\tau \circ \gamma$, then $F^{\sigma} \cong F^{\tau} \otimes F^{\gamma}$, and hence $F^{\sigma} \mathcal{A}_*$ would be at least 2n connected. Thus, $F^{\Sigma_n} \mathcal{A}_* = F^{S_n} \mathcal{A}_* \oplus \text{(terms } 2n \text{ connected and higher)}$.

Theorem (3.4). Using the notation of 0.1, if $M_1 = M_2 = \cdots = M_n$ then $(F^n)^{st}$ is naturally Σ_n equivalent to $\mathbf{Z}[\Sigma_n] \otimes_{\mathbf{Z}[C_n]} (F^{\omega})^{st}$.

Proof. By 3.2, $\Delta: F^n \longrightarrow F^{\Sigma_n}$ is a homotopy equivalence for all $A \in \mathcal{S}_{\mathcal{P}}$, and hence by 3.3 we obtain

$$(F^n)^{st} = \lim_{k \to \infty} F^n S^k[-k] \xrightarrow{\simeq} \lim_{k \to \infty} F^{\Sigma_n} S^k[-k] \xleftarrow{\simeq} \lim_{k \to \infty} F^{S_n} S^k[-k].$$

Now we note that the natural map $\mathbf{Z}[\Sigma_n] \otimes_{\mathbf{Z}[C_n]} F^{\omega} \longrightarrow F^{S_n}$ given by sending $(\sigma \otimes x)$ to $\sigma_*(x)$ (as defined in 3.1) is a Σ_n equivariant isomorphism of simplicial abelian groups.

We now slightly generalize theorem 1.4 of [5] so that we may rewrite $(F^{\omega})^{st}$.

Definition. Given a linear functor G from \mathcal{A} to \mathcal{B} , we define the "twisted" product category $\mathcal{A}_G \mathcal{B}$ as follows. We set $\text{Obj}(\mathcal{A}_G \mathcal{B})$ to be $\text{Obj}(\mathcal{A}) \times \text{Obj}(\mathcal{B})$ and

$$\operatorname{Hom}_{\mathcal{A}_G\mathcal{B}}((A,B),(A',B')) = \operatorname{Hom}_{\mathcal{A}}(A,A') \oplus \operatorname{Hom}_{\mathcal{B}}(B,B') \oplus \operatorname{Hom}_{\mathcal{B}}(G(A),B')$$

with composition defined by $(f, g, h) \circ (f', g', h') = (f \circ f', g \circ g', h \circ G(f') + g \circ h')$. For fixed $X = (A, B), Y = (A', B') \in \mathcal{A}_G \mathcal{B}$, let C_* be the simplicial abelian group

$$[p] \longrightarrow C_p \equiv \bigoplus_{\vec{C} \in N_p \mathcal{A}_G \mathcal{B}} Hom_{\mathcal{A}_G \mathcal{B}}(C_1, X) \otimes Hom_{\mathcal{A}_G \mathcal{B}}(Y, C_0),$$
$$\vec{C} = C_1 \longleftarrow \cdots \longleftarrow C_p \longleftarrow C_0,$$

with the face and degeneracies given like those for F^n . We will represent an arbitrary generating element of C_n by $(\beta_0 \otimes \alpha_0; \alpha_1, \dots, \alpha_n)$. We let $F^{(1)}(\mathcal{A})$ be the simplicial functor

$$[p] \mapsto F_p^{(1)}(\mathcal{A}) = \bigoplus_{\vec{A} \in N_p \mathcal{A}} Hom_{\mathcal{A}}(A_1, A) \otimes Hom_{\mathcal{A}}(A', A_0),$$
$$\vec{A} = A_1 \longleftarrow \cdots \longleftarrow A_p \longleftarrow A_0,$$

and let $F^{(1)}(\mathcal{B})$ be the simplicial functor

$$[p] \mapsto F_p^{(1)}(\mathcal{B}) = \bigoplus_{\vec{B} \in N_p \mathcal{B}} Hom_{\mathcal{B}}(B_1, B) \otimes Hom_{\mathcal{B}}(B', B_0),$$
$$\vec{B} = B_1 \longleftarrow \cdots \longleftarrow B_p \longleftarrow B_0,$$

with the face and degeneracies given like those for F^n .

Proposition (3.5). The functor from A_GB to $A \times B$ which is the identity on objects (and sends (f, g, h) to $f \times g$) produces a homotopy equivalence from C_* to $F^{(1)}(A) \times F^{(1)}(B)$.

Proof. We will (once again) be defining several chain homotopies which arise from semi-simplicial homotopies (they satisfy the simplicial homotopy identities with respect to the face maps; see [11], section 5). Given a semi-simplicial homotopy $\{h_i\}$, one can construct a chain homotopy H by setting $H_n = \sum_{i=0}^n (-1)^i h_i$.

<u>First reduction</u>: The subcomplex of C_* generated by elements of the form $(\beta_0 \otimes \alpha_0; \alpha_1, \dots, \alpha_n)$ such that $\alpha_0 = (0, 0, h_0)$ and $\beta_0 = (0, 0, h_0')$ is acyclic.

<u>Proof.</u> We let $\alpha_i = (f_i, g_i, h_i)$ and define a semi-simplicial homotopy from the identity to 0 as follows:

$$h_i((0,0,h_0')\otimes(0,0,h_0);\alpha_1,\ldots,\alpha_n)$$

$$=((0,0,h_0')\otimes(0,0,h_0);(0,g_1,0),\ldots,(0,g_i,0),(0,id_{B_{i+1}},0),\alpha_{i+1},\ldots,\alpha_n).$$

Now we quotient C_* by this acyclic subcomplex to get a new complex \tilde{C}_* . We will write a generating element of this complex as $((f'_0, g'_0, \star') \otimes (f_0, g_0, \star); \alpha_1, \ldots, \alpha_n)$. The complex \tilde{C}_* splits into a sum of four subcomplexes: $\tilde{C}_* = AA_* \oplus AB_* \oplus BA_* \oplus BB_*$, where

$$AA_n$$
 is generated by $((f'_0, 0, \star') \otimes (f_0, 0, \star); \alpha_1, \ldots, \alpha_n),$
 AB_n is generated by $((f'_0, 0, \star') \otimes (0, g_0, \star); \alpha_1, \ldots, \alpha_n),$
 BA_n is generated by $((0, g'_0, \star') \otimes (f_0, 0, \star); \alpha_1, \ldots, \alpha_n),$
 BB_n is generated by $((0, g'_0, \star') \otimes (0, g_0, \star); \alpha_1, \ldots, \alpha_n).$

Second reduction: The projection from $AA_* \oplus AB_*$ to $F^{(1)}A$ generated by sending $((f'_0, 0, \star') \otimes (f_0, 0, \star); \alpha_1, \ldots, \alpha_n)$ to $(f'_0 \otimes f_0; f_1, \ldots, f_n)$ and AB_* to 0 is a homotopy equivalence.

<u>Proof.</u> Choose elements a of \mathcal{A} and b of \mathcal{B} . The projection has a section defined by sending $(f'_0 \otimes f_0; f_1, \dots, f_n)$ to the equivalence class containing

$$((f'_0, 0_b, \star) \otimes (f_0, 0_b, \star); (f_1, 0_b, 0), \dots, (f_n, 0_b, 0)),$$

where we let 0_b denote the zero endomorphism of b. A simplicial homotopy from the identity to the composite can be defined by sending the class of

$$((f_0',0,\star')\otimes(f_0,0,\star);\alpha_1,\ldots,\alpha_n)\oplus((\hat{f}_0',0,\star')\otimes(0,\hat{g}_0,\star);\hat{\alpha}_1,\ldots,\hat{\alpha}_n)$$

by h_i to the class of

$$((f'_0, 0, \star') \otimes (f_0, 0, \star); (f_1, 0_b, 0), \dots, (f_i, 0_b, 0), (id_{A_{i+1}}, 0, 0), \alpha_{i+1}, \dots, \alpha_n)$$
 \oplus

$$((\hat{f}'_0,0,\star')\otimes(0,\hat{g}_0,\star);(0_a,\hat{g}_1,0),\ldots,(0_a,\hat{g}_i,0),(0,id_{\hat{B}_{i+1}},0),\hat{\alpha}_{i+1},\ldots,\hat{\alpha}_n).$$

<u>Third reduction</u>: The projection from $BB_* \oplus BA_*$ to $F^{(1)}\mathcal{B}$ generated by sending a generating element $((0, g'_0, \star') \otimes (0, g_0, \star); \alpha_1, \ldots, \alpha_n)$ to $(g'_0 \otimes g_0; g_1, \ldots, g_n)$ and BA_* to 0 is a homotopy equivalence.

<u>Proof.</u> Choose some element a of A. The projection has a section defined by sending $(g_0; g_1, \ldots, g_n)$ to the equivalence class containing

$$((0_a, g'_0, \star') \otimes (0_a, g_0, \star); (0_a, g_1, 0), \dots, (0_a, g_n, 0)),$$

where we let 0_a denote the zero endomorphism of a. A simplicial homotopy from the composite to the identity can be defined by sending the class of

$$((0,g_0',\star')\otimes(0,g_0,\star);\alpha_1,\ldots,\alpha_n)\oplus(0,\hat{g}_0',\star')\otimes(\hat{f}_0,0,\star);\hat{\alpha}_1,\ldots,\hat{\alpha}_n)$$

by h_i to the class of

$$((0, g'_0, \star') \otimes (0, g_0, \star); \alpha_1, \dots, \alpha_i, (0, id_{B_{i+1}}, 0), (0_a, g_{i+1}, 0), \dots, (0_a, g_n, 0))$$

$$(0, \hat{g}'_0, \star') \otimes (\hat{f}_0, 0, \star); \hat{\alpha}_1, \dots, \hat{\alpha}_i, (0, id_{\hat{B}_{i+1}}, 0), (0_a, \hat{g}_{i+1}, 0), \dots, (0_a, \hat{g}_n, 0)).$$

We have constructed a diagram of complexes

$$F^{(1)}\mathcal{A} \times F^{(1)}\mathcal{B} \xrightarrow{inc} C_*$$

$$\uparrow \simeq \qquad \qquad \downarrow \simeq$$

$$AA_* \oplus AB_* \oplus BA_* \oplus BB_* \stackrel{\cong}{\longleftarrow} \tilde{C}_*$$

with the maps up and down quasi–isomorphisms by reductions 1–3 above. Since the composite around the square is the identity on $F^{(1)}\mathcal{A} \times F^{(1)}\mathcal{B}$, we see that inc is a quasi–isomorphism. Since the inclusion inc is a section to our map, we are done.

Corollary (3.6). For $f: A \to B$ a linear functor, the natural map

$$F^{\omega}(\mathcal{A}) \oplus F^{\omega}(\mathcal{B}) \to F^{\omega}(\mathcal{A}_f \mathcal{B})$$

is an equivalence.

Proof. We can consider F^{ω} as the diagonal of an n-simplicial abelian group. By the Eilenberg-Zilber theorem it suffices to show that the map is an equivalence on the associate n-dimensional complexes. We can factor the map into n-steps, where we pass from the product category to the twisted category in each simplicial dimension one at a time separately. Each of these maps is levelwise an example of proposition 3.5 except for the tensor of a module. However, since proposition 3.5 was obtained by chain homotopies, it remains true after tensoring with a fixed module. Thus, each of the n maps is an equivalence by the realization lemma (or standard spectral sequence arguments), and we are finished.

Corollary (3.7). For any n we have $\Omega F^{\omega}S \xrightarrow{\simeq} (F^{\omega})^{st}$, and if the exact category \mathcal{C} is split (all cofibrations have a retract), then $F^{\omega}\mathcal{C} \xrightarrow{\simeq} \Omega F^{\omega}S.\mathcal{C}$.

The proof is exactly as in section 1 of [5]).

Corollary (3.8). If $M_1 = M_2 = \cdots = M_n$, then the functor $(F^n)^{st}$ is naturally Σ_n equivalent (in the weak sense—that is, connected by a chain of Σ_n -equivariant maps which are also equivalences non-equivariantly) to $\Omega[\mathbf{Z}[\Sigma_n] \otimes_{\mathbf{Z}[C_n]} (F^{\omega}S.)]$, and in particular

$$(F^n)^{st}(\mathcal{P}) \sim_{\Sigma_n} \mathbf{Z}[\Sigma_n] \otimes_{\mathbf{Z}[C_n]} F^{\omega}(\mathcal{P}).$$

We will now rewrite our functors F^{ω} in terms of Hochschild homology when $\mathbf{Q} \subseteq R$. More generally, one should use Mac Lane homology to rewrite these, which we will do in the next section.

There is a natural simplicial map τ from $F^{\omega}(\mathcal{P})$ to $HH(R^{\otimes n}, (\bigotimes_{j=1}^{n} M_i)_{\tau})$ which is $\mathbf{Z}[C_n]$ —equivariant when the M_i 's are equal given in simplicial dimension p-1 by the composite shown in Figure 1, which is given by the evaluation maps $\mathbf{Z}[G] \to G$ which take $\sum z_i[g_i]$ to $\sum z_i \cdot g_i$ for any abelian group G, and where the map "trace" is the Dennis trace map (as used in [13]).

Proposition (3.9). If $\mathbf{Q} \subseteq R$, then the simplicial map τ from $F^{\omega}\mathcal{P}$ to

$$HH\left(R^{\otimes n}, \left(\bigotimes_{j=1}^{n} M_i\right)_{\tau}\right),$$

is an equivalence which is C_n -equivariant when the M_i 's are equal.

Figure 1.

Proof. The map τ is the diagonal of an n-dimensional simplicial map we call τ' . By the Eilenberg-Zilber theorem, it suffices to show τ' is an equivalence. The map τ' can be decomposed as the composite of n maps of n-simplicial abelian groups, where one applies the map " τ " to one dimension at a time. Levelwise, each of these maps is a rational equivalence by 1.4.3 and 1.4.8 of [7], and hence by the realization lemma (or a standard spectral sequence argument) each of the n-composites is a rational equivalence, and so τ' is a rational equivalence.

4. Relation to Mac Lane homology

In this section we rewrite our computation from section 3 in terms of Mac Lane homology. We will assume the reader is familiar with Mac Lane's Q-construction (e.g. [9] or [10]).

We can rewrite F_* as

$$F_n(\mathcal{C}; D) = \bigoplus_{A_0, \dots, A_n \in \mathcal{C}} D(A_1, A_0) \otimes_{\mathbf{Z}} \mathbf{Z}[Hom_{\mathcal{C}}(A_2, A_1)]$$

$$\otimes_{\mathbf{Z}} \cdots \otimes_{\mathbf{Z}} \mathbf{Z}[Hom_{\mathcal{C}}(A_0, A_n)],$$

where $\mathbf{Z}[X]$ is the free abelian group generated by a pointed set X.

For any abelian group, we have natural maps $\mathbf{Z}[G] \xrightarrow{\beta} Q_*(G) \xrightarrow{\gamma} G$, where $Q_*(G)$ is Mac Lane's Q-construction (an explicit chain construction whose homology is the stable homology of the group G). We also recall that there is a natural map $Q_*(G) \otimes_{\mathbf{Z}} Q_*(G') \xrightarrow{\mu} Q_*(G \otimes_{\mathbf{Z}} G')$ which can be used to give $Q_*(R)$ the structure of a differential graded algebra when R is a ring and such that γ_R becomes a map of differential graded algebras. We note that the natural map $Z[G] \otimes Z[G'] \cong Z[G \times G'] \to Z[G \otimes_{\mathbf{Z}} G']$ commutes with μ via β .

Let D be a *bi-additive* functor. Set $Q_*(\mathcal{C}; D)$ to be the simplicial chain complex defined by

$$Q_n(\mathcal{C}; D) = \bigoplus_{A_0, \dots, A_n \in \mathcal{C}} D(A_1, A_0) \otimes_{\mathbf{Z}} Q_*(Hom_{\mathcal{C}}(A_2, A_1))$$

$$\otimes_{\mathbf{Z}} \cdots \otimes_{\mathbf{Z}} Q_*(Hom_{\mathcal{C}}(A_0, A_n))$$

with simplicial structure maps like those of F_* using the natural maps γ for d_0 and d_{n+1} and μ otherwise. By 1.4.8 of [7], $Q_*(\mathcal{C}; D)$ is naturally equivalent to $TH(\mathcal{C}; D)$. Using β , we obtain a natural transformation of simplicial objects

(*)
$$F_*(\mathcal{C}; D) \xrightarrow{\beta} Q_*(\mathcal{C}; D),$$

which is an equivalence for C a split exact category by the main result of [16]. We note that one can also obtain this result by modifying the proof of proposition 2.1 using $F_0(C; D) = Q_0(C; D)$.

We identify R with the subcategory of \mathcal{P} generated by a free module of rank 1. By inclusion of subcategories, we obtain a map of simplicial objects

(**)
$$Q_*(R;D|_R) \xrightarrow{i} Q_*(\mathcal{P};D),$$

which is a natural equivalence by 2.1.5 of [7].

Theorem (4.1). Let M be an R-bimodule and let G(M, ..., M) be the the local coefficient system on \mathcal{P} as defined in section 2. Then

$$G(M,\ldots,M)^{st}(\mathcal{P}) \sim_{\Sigma_n} \mathbf{Z}[\Sigma_n] \otimes_{\mathbf{Z}[C_n]} HH\left(Q_*(R)^{\otimes n}; M_{\tau}^{\otimes n}\right),$$

where HH is the Hochschild homology complex for $Q_*(R)^{\otimes n}$ acting on the bimodule by

$$(m_1 \otimes \cdots \otimes m_n) * (q_1 \otimes \cdots \otimes q_n) = (m_1 q_1 \otimes m_2 q_2 \otimes \cdots \otimes m_n q_n),$$

$$(q_1 \otimes \cdots \otimes q_n) * (m_1 \otimes \cdots \otimes m_n) = (q_n m_1 \otimes q_1 m_2 \otimes \cdots \otimes q_{n-1} m_n),$$

and C_n is the cyclic group of n elements, which acts by cyclic permutations—the equivalence is weakly Σ_n -equivariant.

Proof. By corollary 3.8, it suffices to show that F^{ω} is weakly equivalent to

$$HH(Q_*(R)^{\otimes n}; M_1 \otimes_{\mathbf{Z}} \cdots \otimes_{\mathbf{Z}} M_n)$$

in a C_n -equivariant manner when the M_i 's are equal. Just as we defined Q_* for F_* , we can define Q_*^{ω} with (appropriately C_n equivariant) maps

$$F^{\omega}(\mathcal{P}) \xrightarrow{\beta'} Q^{\omega}(\mathcal{P}) \xleftarrow{i'} Q^{\omega}(R).$$

Since $Q^{\omega}(R)$ is isomorphic to $HH(Q_*(R)^{\otimes n}; M_1 \otimes_{\mathbf{Z}} \cdots \otimes_{\mathbf{Z}} M_n)$, we simply need to show that both β' and i' are equivalences. However, both these maps are the diagonal maps of n-fold multi-simplicial maps, and these n-fold multi-simplicial maps are n-fold composite maps, each of which is an equivalence by repeated applications of (*) and (**) above.

References

- J. F. Adams, Stable homotopy and generalised homology, The University of Chicago Press, Chicago (1974). MR 53:6534
- [2] H. Baues and G. Wirsching, Cohomology of small categories, J. Pure Appl. Algebra 38 (1985), 187–211. MR 87g:18013
- [3] M. Bökstedt, W. C. Hsiang and I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993), 463-539. MR 94g:55011
- [4] A. Dold and D. Puppe, Homologie nicht-additiver Functoren, Anwendungen, Ann. Inst. Fourier 11 (1961), 201–312. MR 27:186
- [5] B. Dundas and R. McCarthy, Stable K-theory and topological Hochschild homology, Annals of Math. 140 (1994), 685–701. MR 96e:19005a
- [6] B. Dundas and R. McCarthy, Erratum to Stable K-theory and topological Hochschild homology, Annals of Math. 142 (1995), 425-426. MR 96e:19005b
- [7] B. Dundas and R. McCarthy, Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Alg. 109 (1996), 231–294. MR 97i:19001
- [8] T. Goodwillie, Relative algebraic K-theory and cyclic homology, Ann. of Math. 121 (1985), 383–407. MR 88b:18008
- [9] M. Jibladze and T. Pirashvili, Cohomology of Algebraic Theories, Journal of Algebra, 137 (1991), 253–296. MR 92f:18005
- [10] S. Mac Lane, Homologie des anneaux et des modules, CBRM, Colloque de topologie algebrique, Louvain (1956), 55–80. MR 20:892
- [11] P. May, Simplicial objects in algebraic topology, D. Van Nostrand Co. (1967). MR 36:5942

- [12] R. McCarthy, On fundamental theorems of algebraic K-theory, Topology 32 (1993), 325–328.MR 94e:19002
- [13] R. McCarthy, The cyclic homology of an exact category, J. Pure Appl. Alg. 93 (1994), 251–296. MR 95b:19002
- [14] R. McCarthy, A chain complex for the spectrum homology of the algebraic K-theory of an exact category, Algebraic K-theory (Toronto, 1996), Fields Institute Comm., vol. 16, Amer. Math. Soc., Providence, RI, (1997), 199–219. MR 98k:19004
- [15] R. McCarthy, Relative algebraic K-theory and topological cyclic homology, Acta Math., 179 (1997), 197–222. MR 99e:19006
- [16] T. Pirashvili and F. Waldhausen, Mac Lane homology and topological Hochschild homology,
 J. Pure Appl. Algebra 82 (1992), 81–98. MR 93k:16016
- [17] F. Waldhausen, Algebraic K-theory of spaces, Springer Lecture Notes in Math. 1126 (1985), 318–419. MR 86m:18011
- [18] G. Whitehead, Elements of Homotopy Theory, Springer-Verlag, Graduate Texts in Mathematics 61 (1978). MR 80b:55001

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801 $E\text{-}mail\ address:\ randy@math.uiuc.edu$